

Resolving the paradox of iodine - an essential biomolecule

Blog Post 2 of 4 - Diluting iodine solutions debunk the I₂ toxicity belief

Molecular iodine is not easily studied in clinical settings due to its instability in aqueous solution. To circumvent this problem, complexing agents and other iodine species have been used to stabilize I₂.

As a result of not being able to adequately study molecular iodine, the scientific community has arbitrarily linked negative traits to I₂, even though they should be attributed to the complex and diverse iodine solution.

It is essential to consider that when elemental iodine is dissolved in water (i.e., the skin staining antiseptic generally known as iodine), at least 9 different iodine species are created [2].

Historically, the irritancy and staining associated with applying iodine tincture or Lugol's solution has been ascribed to I₂ and therefore, PVP-I was viewed as an advance [10].

A paradoxical consequence of PVP-I is the increase in active biocide (I₂) when it is diluted up to 100-fold [4, 11]; this increase in I₂ concentration is associated with a decrease in cytotoxicity [12-15].

Even so, the myth of I₂ toxicity persists and can be found today in regulatory compendia, WHO guidelines and even on Wikipedia.

if PVP-I formulations diluted with water are less toxic while containing higher levels of I₂, how could I₂ be the cause of toxicity?

The quantity of all different iodine species present in Lugol's Solution is 55,000 parts per million (ppm) by volume. Molecular iodine constitutes 170 parts per million of those. In PVP-I, there are 10,000 ppm of total titratable iodine species and of only 1-8 ppm of those are molecular iodine. [8] In both solutions, most of those components are triiodides and complexing agents. Remarkably, the iodine species present in the lowest quantity is also the only species that is biocidal - molecular iodine.

Zeroing in on PVP-I, an interesting interaction happens when it is diluted. The concentration of molecular iodine increases while the concentration of the other iodine species decreases. When 10% PVP-I is diluted 1/10 or 1/100 with water the formulation becomes less toxic but more effective as an antiseptic because the carrier molecule releases more molecular iodine while the overall concentration of the other iodine species decreases [9].

Behind the Research Dr. Jack Kessler

e: jackkessler@i2pure.com

Research Focus

Dr. Kessler's expertise lies in the formulation of compositions that contain molecular iodine and in systems analysis of complex medical equipment.

He has successfully formulated pure I₂ for a wide range of consumer and medical applications, taken a solid oral dosage form of I₂ into phase III clinical trials and demonstrated that molecular iodine is not responsible for the staining and toxicity observed with topical iodine disinfectants.

His work includes the characterization of the structure-function of bacterial neuraminidase, the chemistry of iodination reactions in the follicular lumen and development of commercial products. He has utilized a variety of techniques to incorporate molecular iodine into different compositions and to characterize these materials.

Bio

Dr. Kessler has degrees in Chemistry from the Stevens Institute of Technology, Hoboken NJ (BS, 1972) and Biochemistry from S.U.N.Y at Syracuse, NY (PhD, 1980).

He has directed numerous teams focused on the formulation and development of animal and human drugs, managed joint venture programs for commercialized products and designed/managed Phase I, II and III clinical trials for a drug to alleviate breast pain.

His patents have been the basis of development of several iodine-based products including the Violet tablet, the ioRinse line of oral care products and the enzyme-based Iodozyme teat dip previously marketed by DeLaval. Dr. Kessler has also published basic and applied research on iodine formulations and the biochemistry of iodine/thyroid hormones.

He is currently the Chief Scientific Officer at I2Pure Corp. where he oversees and guides the development and commercialization of proprietary drugs and medical devices that deliver molecular iodine technology.

References

- [2] Cooper Iodine revisited. Wiley Online Library, International Wound Journal, 2007. <https://doi.org/10.1111/j.1742-481X.2007.00314.x>
- [4] Gottardi W. Potentiometric evaluation of the equilibrium concentrations of free and complex bound iodine in aqueous solutions of Polyvinylpyrrolidone-iodine. Fresenius Z Anal Chem 1983;314:4.
- [8] Gottardi W. The uptake and release of molecular iodine by the skin: chemical and bactericidal evidence of residual effects caused by povidone-iodine preparations. J Hosp Infect 1994. <https://www.sciencedirect.com/science/article/pii/0195670195902899>
- [9] R L Berkelman, B W Holland, R L Anderson. Increased bactericidal activity of dilute preparations of povidone iodine solutions. 1982 J Clinical Microbiology. <https://journals.asm.org/doi/abs/10.1128/jcm.15.4.635-639.1982>
- [10] Sneader W. Drug Discovery: A History. Wiley; 2005.
- [11] Ferguson AW, Scott JA, McGavigan J, Elton RA, McLean J, Schmidt U, et al. Comparison of 5% povidone-iodine solution against 1% povidone-iodine solution in preoperative cataract surgery antisepsis: a prospective randomised double blind study. Br J Ophthalmol 2003;87(2):163-7. <https://www.ncbi.nlm.nih.gov/pubmed/12543744>.

References continued

- [12] Smoot EC, Kucan JO, Roth A, Mody N, Debs N. In vitro toxicity testing for antibacterials against human keratinocytes. *Plastic and reconstructive surgery* 1991;87(5):917-24.
<https://doi.org/10.1097/00006534-199105000-00017>.
- [13] Kaspar D, Schwarz W, Claes L, Ignatius A. [Study of the toxicity of povidone-iodine for fibroblast-like cells (BALB-3T3) and primary human chondrocytes]. *Arzneimittel-Forschung* 2006;56(8):605-11.
<https://doi.org/10.1055/s-0031-1296759>.
- [14] Li SH, Wang Y, Gao HB, Zhao K, Hou YC, Sun W. Experimental study on the toxicity of povidone-iodine solution in brain tissues of rabbits. *Int J Clin Exp Med* 2015;8(9):14863-70,
<https://www.ncbi.nlm.nih.gov/pubmed/26628968>.
- [15] Goswami K, Cho J, Foltz C, Manrique J, Tan TL, Fillingham Y, et al. Polymyxin and Bacitracin in the Irrigation Solution Provide No Benefit for Bacterial Killing in Vitro. *The Journal of bone and joint surgery American volume* 2019;101(18):1689-97. <https://doi.org/10.2106/JBJS.18.01362>.