Resolving the paradox of iodine - an essential biomolecule

Blog Post 1 of 4 -

Imprecise definition of lodine is a major challenge to clinical application

The generalized use of the term "iodine" has prevented us from seeing molecular iodine's beneficial effects for too long.

that stain the skin.

Among chemists, the use of this term is a long-standing abuse of iodine's Molecular iodine (I2) was assumed every iodine species as "iodine".

chemistry within the medical patients.

compositions were invented. First furtherproof of I2 "toxicity". Lugol's solution in 1829 and later

The broad medical community tinctures of iodine [1]. Both brought considers the term iodine as any of formulations to the public that were many different topical antiseptics clinically extremely useful but also associated with toxicity, irritation, and dark staining.

nomenclature which generalizes to be the cause of the toxicity/ irritation and staining since it is the active biocide in both compositions This nomenclature generalization [1]. When povidone-iodine (PVP-I) masks the complexity of iodine was created in 1955 it had lower concentrations of I2, and came community and contributes to with reduced staining, irritation, some avoidable adverse effects for and toxicity [1]. It was viewed as a significant advance over previous formulations and the Over 193 years ago, topical iodine medical community correlated it as

The lack of addressing specific iodine components makes it difficult to correct misconceptions and leads to miseducation surrounding iodine's properties of staining, toxicity, and biocidal activity.

Even in scientific manuscripts, the term iodine is used imprecisely, and can refer to several different chemical entities and complicated formulations that contain diverse iodine species. This imprecise description of iodine compositions may stem, in part, from ambiguous or deficient analytical characterizations. The USP method to measure I2 (thiosulfate titration) also detects triiodide (I) and hypoiodous acid (HOI). Consequently, clinicians do not know the concentration of active biocide (I2) in the iodophors they use. The equations that describe the equilibrium distribution of aqueous iodine species are non-linear and, as a result, only one predictive mathematical model exists [3].

Iodine exists in several oxidation states ranging from -1 (iodide) to +7 (e.g.: sodium periodate). With an oxidation state of 0, elemental iodine (12), the active biocide in topical iodine compositions, is a blue-black crystal with a high metallic luster that sublimes readily to generate a violet-colored vapor.

In an aqueous environment, iodine exists in several different species. These include iodide (I-), molecular iodine (12), hypoiodous acid (HOI), iodate (IO3-), triiodide (I3-) and polyiodides (I5- to I9-) [4]. They are characterized by different physical and chemical properties. The properties of an iodine containing composition can only be accurately assessed through analytical characterization for all ingredients [5, 6], the buffering capacity and osmotic strength.

In solution, the term "molecular iodine" or "free iodine" is used to refer to the I2 molecule. Its water solubility is limited due to its hydrophobicity and it reacts with water to form HOI. The reactivity of I2 in water is the single biggest challenge for topical iodine formulators. The chemical reactivity of 12 includes addition to double bonds, oxidization of sulphydral groups, addition to activated aromatic groups and formation of *N-iodo derivatives.*[7]

Research Focus

Dr. Kessler's expertise lies in the formulation of compositions that contain molecular iodine and in systems analysis of complex medical equipment.

He has successfully formulated pure I2 for a wide range of consumer and medical applications, taken a solid oral dosage form of I2 into phase III clinical trials and demonstrated that molecular iodine is not responsible for the staining and toxicity observed with topical iodine disinfectants.

His work includes the characterization of the structure-function of bacterial neuraminidase, the chemistry of iodination reactions in the follicular lumen and development of commercial products. He has utilized a variety of techniques to incorporate molecular iodine into different compositions and to characterize these materials.

References

- [1]
- [2] https://doi.org/10.1111/j.1742-481X.2007.00314.x
- [3] [4]
- [5] inactive ingredients on biological targets. Science 2020;369(6502):403-13. https://doi.org/10.1126/science.aaz9906.
- [6] substitution. Can Med Assoc J 1984;131(12):1449-52, https://www.ncbi.nlm.nih.gov/pubmed/6498699.
- [7] Preservation: Williams & Wilkins; 1991, p. 152-66.

2 JOURE 12 JUNE 16 a Veteran Owned Small Business (VOSB). Copyright to I2 DURE Corp. All Rights Reserved by I2 PURE Corp. None of the text content, images or video on this web site can be used without the written permission of I2 PURE Corp.

Behind the Research Dr. Jack Kessler

e: jackkessler@i2pure.com

Bio

Dr. Kessler has degrees in Chemistry from the Stevens Institute of Technology, Hoboken NJ (BS, 1972) and Biochemistry from S.U.N.Y at Syracuse, NY (PhD, 1980).

He has directed numerous teams focused on the formulation and development of animal and human drugs, managed joint venture programs for commercialized products and designed/managed Phase I, II and III clinical trials for a drug to alleviate breast pain.

His patents have been the basis of development of several iodine-based products including the Violet tablet, the ioRinse line of oral care products and the enzyme-based lodozyme teat dip previously marketed by DeLaval. Dr. Kessler has also published basic and applied research on iodine formulations and the biochemistry of iodine/thyroid hormones.

He is currently the Chief Scientific Officer at I2Pure Corp. where he oversees and guides the development and commercialization of proprietary drugs and medical devices that deliver molecular iodine technology.

Capriotti K, Capriotti JA. Topical iodophor preparations: chemistry, microbiology, and clinical utility. Dermatol Online J. 2012 15;18(11):1. PMID: 23217942. https://pubmed.ncbi.nlm.nih.gov/23217942/ Cooper Iodine revisited. Wiley Online Library, International Wound Journal, 2007.

Gottardi W. lodine and disinfection: theoretical study on mode of action, efficiency, stability, and analytical aspects in the aqueous system. Archiv der Pharmazie 1999;332(5):151-7.

Gottardi W. Potentiometric evaluation of the equilibrium concentrations of free and complex bound iodine in aqueous solutions of Polyvinylpyrollidone-iodine. Fresenius Z Anal Chem 1983;314:4.

Pottel J, Armstrong D, Zou L, Fekete A, Huang XP, Torosyan H, et al. The activities of drug

Napke E, Stevens DG. Excipients and additives: hidden hazards in drug products and in product

Gottardi W. lodine and lodine Compounds. In: Block SS, editor Disinfection, Sterilization, and